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Abstract

An implementation of the Asymptotic &Veform Evaluation (WE) technique is
presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily
shaped three dimensional perfect electric conductor(PEC) bodies. An Electric Field Integral
Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The
electric current, thus obtained is expanded in a Taylor series around the frequency of interest. The
coeficients of the @ylor series (called “moments”) are obtained using the frequency derivatives
of the EFIE. Using the moments, the electric current on the PEC body is obtained over a
frequency band. Using the electric current atedéinct frequencies, RCS of the PEC body is
obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere
are presented over a bandwidth. A good agreement betw&EraAd the exact solution over the

bandwidth is observed.
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1. Introduction

The Method of Moments (MoM) using the Electric Field Integral Equation (EFIE) has
been a very useful tool for accurately predicting the Radar Cross Section (RCS) of arbitrarily
shaped three dimensional PEC objects [1]. Implementation of MoM for EFIE involves solving for
electric current using the vector and scalar potential solutions which satisfy the boundary
condition that the tangential electric field at the boundary of the PEC body is zero. This is done by
using Galerkirs technique and forming simultaneous equations. In a subdomain technique, the
PEC body is divided into subdomains such as triangles, rectangles or quadrilaterals. The
simultaneous equations are generated over the subdomains and added together to form a global
matrix equation. This results in a dense, complex matrix, which can be solved either by a direct
solver using LU decomposition or by an iterative solver using either conjugate gradient method or
biconjugate gradient method. Generation of the matrix equation and its solution are the two major

computationally intensive operations in MoM.

To obtain the frequency response of RCS using MoM, one has to repeat the calculations at
every frequency over the frequency band of interest. If the RCS is highly frequency dependent,
one needs to do the calculations at the finer increments of frequency to get an accurate
representation of the frequency response. This can be computationally intensive and for
electrically lage objects it can be computationally prohibitive despite the increased power of the
present generation of computers dlleviate the above problems, the Asymptotiavéform
Evaluation (AVE) technique has been proposed. Applied to timing analysis of veey $aale
integrated (VLSI) circuits intially [2,3], it is finding increasing interest in electromagnetic

analysis of microwave circuits [4,5]. Recently detailed description of VME applied to



frequency domain electromagnetic analysis is presented in [6].

In this work, we describe the application ofWE for predicting RCS of the
three dimensional PEC objects over a wide band of frequencies using the Method of Moments. In
the AWE technique, the electric current is expanded imydoF series around a frequendyhe
coeficients of the @ylor series (called ‘moments’, not to be confused with moments in Method of
Moments) are evaluated using the frequency derivatives of the EFIE. Once the moments are
obtained, the electric current distribution on the PEC body can be obtained at any frequency

within the bandwidth. Using this current distribution, the RCS is obtained.

The rest of the report is gainized as described belokor the sake of completeness, in
section 2, the MoM formulation of the EFIE is described briefty section 3, WE
implementation for the EFIE is described in detail. The frequency derivatives of EFIE are
obtained and presented. Numerical results for a square plate, cube, and sphere are presented in
section 4. The numerical data are compared with the exact solution over the bandwidth. CPU time
and storage requirements fovWk formulation are given for each example and are compared
with those required for exact solution at each freque@oyncluding remarks on the advantages

and disadvantages of the AWE technique are presented in section 5.

2. MoM Implementation of EFIE

Consider an arbitrarily shaped PEC body shown in figure 1. For RCS calculations, a plane

wave is assumed to be incident at an andle @) . At the surface of the PEC bodye total

tangential electric field is zero.Ming the total tangential electric field in terms of the scattered



field and the incident field

Escat+ Einc =0 (1)

The scattered electric field in terms of the equivalent electric current distribution on the PEC body

is given by[7]

_ kg, _exp( ij) jk Oeeorr e 1y EXP(HKR) L0
eI o0 2R

scat

and the incident electric field is given by

Einc = Eiexp[j (kx+ky+k2)] ©)
where
E, = XE,; +yE; + ZE, (4)
and
E,; = COsb,cosp cosa — sing sina (5)
Eyi = c0sP; sing cos + cosy, sina (6)
E,; = —sin6, cosa (7)
k, = ksin6,cosp. (8)
ky = ksing; sing, (9)
k, = kcosp, (10)
_ J 2 2 2
R=A(X=X)"+(y-y) +(z-2) (11)

k is the wavenumber corresponding to any frequéncyrhe source point i{x’,y’,z') and



(x, Y, 2 is the observation pointl’ indicates the del operation with respect to the source

coordinate systema is the polarization angle [8]. The surface integral in equation (2) is

evaluated over the surface of the PEC body.

In a subdomain MoM, the PEC surface is divided into subdomains such as triangles,
rectangles and quadrilaterals. In this report we follow the triangular subdomain approach reported
in [9]. The sample discretization of a square plate and a sphere with triangular subdomains are

shown in figure 2. The electric current is expanded in rooftop basis functions over each triangle.

3

z nt2A M o)

(12)

A is the area of the triangle and the other parameters with respect to a triangle are shown in

figure 3.

Equations (2) and (3) are substituted in equation (1), and following Gatet&atinique,

equation (1) is mutiplied by a vector testing functibnand integrated over the surface of a

triangle [9].
N,
(|t)d No - (it) (it) exp (—kR) ij)
Jtzl nt= 1 2 D4T[HT H‘J dsds

LTT?JJ' e _I_(lt) DJ, DD’ J(Jt) Cexp ( JkR) dsds}]

_HT(It) «E 0s mt=123; it=1,2,3, .8 (13)



where

| 0o

(it) 0 (ivy O
VNS 2A(jt) O —The O
| (|t) D C
(it) (it)
Tt = O —Tme C
mt 2A(|t)

(14)

(15)

N, is the total number of triangles. Supersc(iptis used to indicate the triangle containing the

observation and superscrifit) is used to indicate the triangle containing the source point. The

contributions from all the triangles over the surface are added to form a global matrix equation

Z(K1 (k) = V(K

where

D41T

N
- No o (it) (it) exp (-jKR) JkR)
Z(k) = Z [ DJ—HT J’IJ dsds
ing

and

) |
V(K = jjTr(r:t) «E, . ds m=123; it=123, ...
It

(16)

(in 0.0, . (t) Dexp(HkR) . _ o
D Too Of[CD * 35 T——5—=dsds mt=1,2,3; it=1,2,3, ... N (17)
4nkH J—JJ; R

(18)

In equation (17)Z (k) is a complex, dense square matik(k) is the excitation vector and

| (k) is the vector with unknown current coefficients.
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Equation (16) is solved at any specific frequefgywith wavenumberk ) either by a
direct method using LU decomposition or by an iterative method using either conjugate gradient
method or biconjugate gradient method. The advantage of direct method is that for multiple

incident angles, th& (k) matrix has to be decomposed only once and for each incident angle

the forward/backward substitutions are performed which are computationally less intensive.

The solution of equation (16) gives the unknown currentficofits | (k) which are

substituted in equation (12) to obtain the electric current distribution over all the triangles. Once

the electric current distribution is known, the scattered electric far field is computed as [7]

exp (—k,r) PN L .
Etscar() |r LT Ko7 = H(eeﬂp(p) « J(x',y') exp(jk,sin (8 (x' cosp+'ysing) +Z cosd)) dx'dy’ (19)

where (r, 6, @) are the spherical coordinates of the observation point. The radar cross section is

given by

2
E
g = lim 4nr2—| fscat(r)L
= |Einc(r)|

(20)
The radar cross section given in equation (20) is calculated for at one freq@emeythe proper
sampling size of the discretization, this calculation is widely accepted in the RCS community as

“exact” solution. If one needs RCS frequency response, this calculation is to be repeated at

different frequency values.
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3. AWE Implementation

The general implementation ofWE for any frequency domain technique used for
electromagnetic analysis is given in detail in [6]. As shown in the previous section, the solution

of equation (16) gives the unknown current ot vectorl (k) at a particular frequenty

Insteadl (k) can be expanded in Taylor series as

k) =y M, (k—k)" (21)
n=0

with the momentd1  given by [6]

. vV k) N (1-8,02 (k)M _
My = 27 (k) | —= - § —— g

q=0
(k,) is thegth derivative with respect tio of Z(k) given in equation (17) and evaluated at

: (22)

7(@

k,. Similarly, v (ky) is thenth derivative with respect g of V(k) given in equation (18) and

evaluated atk0 . The Kronecker deﬁ@O is defined as

0 g O (23)

The evaluation oz ‘¥ (K) is alengthy process, due to the presende’ &f in the second

term of equation (17). The derivatives can be obtained by successiventditing the previous

derivative of Z (k) . Alternatively each deriavtive can be independently obtained by using the

product rule [10]:

12



-1 2 Qq-2
d“ o0 U Opve T U L o v u
—[uv] = vV—-+ + — 5t 1
p .a-p
%a_va Y, Eﬂ%“a v (24)
ok° kP

|
where=H = — % the binomial coefficient, g non-negetive integer =1
B pl(g-p)! q J J %j
On the right hand side of equation (17), the derivatives of the two terms can be obtained
by setting

jkn,

u:411

and

_ (it) (it) exp (HkR) JkR)
vV = J’J’T J’IJ dsds

in the first term and

. -1
_ o ngk
T 4T
and
v = U e 0 %J’ S e g DD——eXp(RJkR) dsds
it

in the second term. The derivatives of the two terms can be obtained independently and added

together to geZ(q) (K) . After performing a number of dérentiations, it can be shown that the

explicit and compact representationZ)(fq) (ky) is given by [6]

13



Z(Q) (ko) - z di)IJ.T (it) J-J-J(lt) (_JR)QE]_ q ﬂeXp( JkR) dsds

- .0 41 jk,RE R
ing (e Oy, 500 a5 5 P(ap exp(- JkR)
DD Th DD Ji 0(HR) 'O dsds
k[j .[I z o (jk R) pD } ]
mt=1,2,3; it=1,2,3, .... i (25)
where the permutation functid?(q,p)is defined as [11]
|
P(qp = —% (26)

(a-p)!

The expression foy " (k,) isgiven by

. it .
V(n) (k) = (J)nHTrE“It) * E; (X1+Y1+Zl)nexp(Jko(Xl+Y1+Zl))ds
mt=1,2,3; it=1,2,3, .... N (27)
whereX; = xsinB,cosgp ,Y; = ysing;sing, andZ, = zcosb, .

Substituting equations (25) and (27) in equation (22), the moment&/Bfake obtained.
Using these moments, the current &icefnts at frequencies around the expansion frequency are
obtained by using equation (21). The electric current distribution over each triangular subdomain
is obtained using equation (12). Using equations (19) and (20), the radar cross section at

frequencies around the expansion frequency can be calculated.

4. Numerical Results

To validate the analysis presented in the previous sections, a few numerical examples are

considered. RCS frequency response calculations are done for a square plate, a cube, and a

14



sphere. The numerical data obtained usii¢EAare compared with the results calculated at each
frequency using the triangular patch Method of Moments.\Wl refer to the later method as

“exact solution.” All the computations reported below are done on a CONVEX C-220 computer.

(a) Square Plate:

First example is a square platec(nx 1cm, figure 4(a)) with the incident electric field at

0, = 90° and @ = 0°. The incident field is E-polarizeda (= 900). The RCS frequency

response is calculated with 12 GHz as the expansion frequ&éhey AVE moments are
calculated at 12 GHz and are used in thgldr series expansion. The frequency response from

9 GHz to 15 GHz is plotted in Figure 4(b) along with the exact solution calculatedea¢ mtif
frequencies. A very good agreement can be seen betweeWBdraquency response and the
exact solution over the bandwidth. The frequency response is calculated using 8thvéEder A
The frequency response calculation using 5th ord®EAs also plotted in figure 4. For 307
unknowns, exact solution took around 262 seconds CPU time to fill the matrix and 1.6 seconds
CPU time to LU factor the matrix at each frequer®WE frequency response calculation took
1187 seconds CPU time to fill the matrices including the frequency derivative matrices and
1.6 seconds CPU time to LU factor the matrix. The exact solution was carried out at
7 frequencies, whereas, WithVE the frequency response is calculated at frequency increments
of 0.1 GHz. There is a substantial amount of savings in CPU time by ugiig when RCS

frequency response is required with fine frequency increments.

Another example of RCS frequency response of the square plate is considered in the

frequency range 25 GHz to 35 GHz. The square plate is discretized with 603 unknowns. The

15



AWE frequency response is calculated using 8th ordstol series expansion. The RCS
frequency response with a E-polarized € 900) incident wave ab, = 90° and ¢ = 0° is

plotted from 25 GHz to 35 GHz in figure 5. The frequency response calculation using 6th order
AWE is also plotted in figure 5. All the moments &VE are calculated at 30 GHz. It can be seen
from figure 5 that WE frequency response agrees well with the eaxct solution at each frequency
AWE frequency response is calculated at 0.1 GHz incremes. tAok 4470 seconds CPU time

to fill the matrices, including the derivative matrices, whereas exact solution took 909 seconds for
matrix fill at each frequency (i.e., 9090 seconds for 10 frequencies). The LU factorization took

12.4 seconds CPU time foMAE, whereas it took 12.5 seconds CPU time for exact solution at

each frequency calculation (125 seconds for 10 frequencies).

(b) Cube

RCS frequency response of a culberix 1cmx 1cm , fig. 6(a)) is computed using AWE
for normal incidence. The frequency response is calculated WitlkbHz as the expansion
frequency and plotted in figure 6(b) over the frequency band 8 GHz to 14 GHz. The results are
plotted both for 4th orderWE and 8th order WE. AWE frequency response is calculated with
0.1 GHz frequency increment. The cube is discretized with 348 triangular patches resulting in 522
unknowns. A good agreement between thiéEAresults and the exact solution can be seen. Even
the 4th order WE gave accurate results except in the end of the band region. The 4th\iger A
took 1512 seconds CPU time for filling the matrices including the derivative matrices and
8 seconds CPU time for LU factorization. The 8th ord&fEAtook 3082 seconds CPU time for
filling up the matrices including the derivative matrices and 8 seconds CPU time for LU

factorization. The exact solution took about 613 seconds CPU time to fill the matrix

16



(4291 seconds for 7 frequencies) and 8 seconds CPU time for LU factorization (56 seconds for

7 frequencies).

(c) Sphere

As a third example, a PEC sphere of radius 0.318cm is consideretknionstrate the
usefulness of WE over a wide bandwidth, three frequency points are considered at 20 GHz, 30
GHz and 40 GHz to obtain RCS frequency response over the frequency range 15 GHz to 45 GHz.
The sphere is discretized into 248 triangular elements at 20 GHz and 30 GHz and 504 triangular
elements at 40 GHz. The frequency response is plotted in figure 7 along with the exact solution
calculated with 1 GHz frequency interval over the bandwidth. It can be seerWWkatrédquency
response agrees well with the exact solution. It can be noted that even the 4thVoElés A
sufficient to obtain the accurate frequency response over the bandwidth. The CPU timings for
matrix fill and LU factorizations are given irafile 1. It can be seen fronafdle 1 that the exact
solution with a frequency interval of 1 GHz took around 6hours of CPU time to calculate the
frequency response over the frequency bandwidth (15 GHz to 45 GNE) cAlculation requires

only 1 hour and 22 minutes of CPU time.

Table 1: CPU timings for RCS frequency response calculation of a PEC sphere

Frequency Band (GHz)

15GHz-25GHz 25GHz-35GHz 35GHz-45GHz
Method (372 unknowns) (372unknowns) (756 unknowns)
Matrix Fill | LU Factor | Matrix Fill | LU Factor | Matrix Fill | LU Factor
(secs) (secs) (secs) (secs) (secs) (secs)
AWE_MoM 828 3 828 3 3211 25

(4th order)
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Table 1: CPU timings for RCS frequency response calculation of a PEC sphere

Frequency Band (GHz)
15GHz-25GHz 25GHz-35GHz 35GHz-45GHz

Method (372 unknowns) (372unknowns) (756 unknowns)
Matrix Fill | LU Factor | Matrix Fill | LU Factor | Matrix Fill | LU Factor

(secs) (secs) (secs) (secs) (secs) (secs)
MoM 3710 30 3710 29 14,220 250

(10 Frequency
Points)

Comment on Storageln all the above examples, when solving a matrix equation, one needs to

store a complex, dense mat#x k) of sizeN x N for exact solution at each frequenExbrnth

order AWE, one needs to stan@umber of complex, dense matrixe“s(%) (k,) ,9=1,2,3,...n of

size N x N, along with the matrixZ (k,) of sizeN x N. For electrically lage problems, this

could impose a burden on computer resources. This problem can be overcome by storing the

(a)

derivative matricesZ" " (k,) out-of-core, as the derivative matrices are required only for

matrix-vector multiplication.

5.0 Concluding Remarks

An implementation of WE for frequency domain Method of Moments is presented. The
RCS frequency response forfdient PEC objects such as a square plate, cube, and sphere are
computed and compared with the exact solution. It is also found to be useful to use multi-
frequency expansion points to get wide frequency bandwidth. From the numerical examples
presented in this report,WE is found to be superior in terms of the CPU time to obtain a

frequency response. It may also be noted that although calculations are done at one incidence

18



angle for all the examples presented, with a nominal cost, the frequency response at multiple
incidence angles can also be calculateWEAis accurate at and around the frequency of
expansion and the accuracy deteriorates beyond certain bandwidth. The acculdy @iek a
desired frequency band and its relation to the ordeNMdE A0 be used are topics of interest for
future research. Wh these topics addressedWEk will be of good use in computing the

frequency response using a frequency domain technigue such as Method of Moments.
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Figure 1 Arbitrarily shaped three dimensional PEC object
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Figure 2 Tiangular discretization of the three diemnsional PEC objects. (a) Square plate - As the
are set to zero on the edges (b) Sphere.
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(b) Edge 2

(c) Edge 3

Figure 3 The current basis function as defined in equation (7) for the three edges of the triangle.
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Figure 4(a) Square Plate (1lcmX1lcm)
(b) RCS frequency response the square plate(lcmX1lcm) from 9GHz to 15GHz
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Figure 5 RCS frequency response of the square plate(figure 4(a)) from 25GHz to 35GHz
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Figure 6(a) A PEC cube (1cmXlcmXlcm)
(b) RCS frequency response of the cube from 9GHz to 15GHz
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Figure 7 RCS frequency response of a sphere (radius=0.318cm) from 15GHz to 45GHz using
three frequency expansion points at 20GHz, 30GHz and 40GHz
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